5 Probabilistic Relational Models

نویسندگان

  • Lise Getoor
  • Nir Friedman
  • Daphne Koller
  • Avi Pfeffer
  • Ben Taskar
چکیده

Probabilistic relational models (PRMs) are a rich representation language for structured statistical models. They combine a frame-based logical representation with probabilistic semantics based on directed graphical models (Bayesian networks). This chapter gives an introduction to probabilistic relational models, describing semantics for attribute uncertainty, structural uncertainty, and class uncertainty. For each case, learning algorithms and some sample results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Relationship between Logical Bayesian Networks and Probabilistic Logic Programming Based on the Distribution Semantics

A significant part of current research on ILP deals with probabilistic logical models. Over the last decade many logics or languages for representing such models have been introduced. There is currently a great need for insight into the relationships between all these languages. One class of languages are those that extend probabilistic models with elements of logic, such as in the language of ...

متن کامل

Compiling Relational Database Schemata into Probabilistic Graphical Models

A majority of scientific and commercial data is stored in relational databases. Probabilistic models over such datasets would allow probabilistic queries, error checking, and inference of missing values, but to this day machine learning expertise is required to construct accurate models. Fortunately, current probabilistic programming tools ease the task of constructing such models [1, 2, 3, 4, ...

متن کامل

On the Connections between Relational and XML Probabilistic Data Models

A number of uncertain data models have been proposed, based on the notion of compact representations of probability distributions over possible worlds. In probabilistic relational models, tuples are annotated with probabilities or formulae over Boolean random variables. In probabilistic XML models, XML trees are augmented with nodes that specify probability distributions over their children. Bo...

متن کامل

Statistical Relational Learning : Four Claims and a Survey

made significant progress over the last 5 years. We have successfully demonstrated the feasibility of a number of probabilistic models for rela-tional data, including probabilistic relational models, Bayesian logic programs, and relational probability trees, and the interest in SRL is growing. However, in order to sustain and nurture the growth of SRL as a subfield we need to refocus our effort...

متن کامل

Probabilistic Models for Relational Data

We introduce a graphical language for relational data called the probabilistic entityrelationship (PER) model. The model is an extension of the entity-relationship model, a common model for the abstract representation of database structure. We concentrate on the directed version of this model—the directed acyclic probabilistic entity-relationship (DAPER) model. The DAPER model is closely relate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009